A model of inverse agonist action at thyrotropin-releasing hormone receptor type 1: role of a conserved tryptophan in helix 6.
نویسندگان
چکیده
A binding pocket for thyrotropin-releasing hormone (TRH) within the transmembrane helices of the TRH receptor type 1 (TRH-R1) has been identified based on experimental evidence and computer simulations. To determine the binding site for a competitive inverse agonist, midazolam, three of the four residues that directly contact TRH and other residues that restrain TRH-R1 in an inactive conformation were screened by mutagenesis and binding assays. We found that two residues that directly contact TRH, Asn-110 in transmembrane helix 3 (3.37) and Arg-306 in transmembrane helix 7 (7.39), were important for midazolam binding but another, Tyr-282 in transmembrane helix 6 (6.51), was not. A highly conserved residue, Trp-279 in transmembrane helix 6 (6.48), which was reported to be critical in stabilizing TRH-R1 in an inactive state but not for TRH binding, was critical for midazolam binding. We used our previous model of the unoccupied TRH-R1 to generate a model of the TRH-R1/midazolam complex. The experimental results and the molecular model of the complex suggest that midazolam binds to TRH-R1 within a transmembrane helical pocket that partially overlaps the TRH binding pocket. This result is consistent with the competitive antagonism of midazolam binding. We suggest that the mechanism of inverse agonism effected by midazolam involves its direct interaction with Trp-279, which contributes to the stabilization of the inactive conformation of TRH-R1.
منابع مشابه
A hydrophobic cluster between transmembrane helices 5 and 6 constrains the thyrotropin-releasing hormone receptor in an inactive conformation.
We have studied the role of a highly conserved tryptophan and other aromatic residues of the thyrotropin-releasing hormone (TRH) receptor (TRH-R) that are predicted by computer modeling to form a hydrophobic cluster between transmembrane helix (TM)5 and TM6. The affinity of a mutant TRH-R, in which Trp279 was substituted by alanine (W279A TRH-R), for most tested agonists was higher than that of...
متن کاملRole of helix 8 of the thyrotropin-releasing hormone receptor in phosphorylation by G protein-coupled receptor kinase.
The thyrotropin-releasing hormone (TRH) receptor undergoes rapid and extensive agonist-dependent phosphorylation attributable to G protein-coupled receptor (GPCR) kinases (GRKs), particularly GRK2. Like many GPCRs, the TRH receptor is predicted to form an amphipathic helix, helix 8, between the NPXXY motif at the cytoplasmic end of the seventh transmembrane domain and palmitoylation sites at Cy...
متن کاملFunctional Importance of Transmembrane Helix 6 Trp and Exoloop 3 Val of Rat Gonadotropin-Releasing Hormone Receptor
Previous studies have established that the interaction of gonadotropin-releasing hormone (GnRH) with its receptor (GnRHR) would require partial entry of the Nand C-terminal regions of ligand into the transmembrane core. The functional significance of the conserved aromatic residue Trp present in the transmembrane helix 6, and Val located in exoloop 3 of the rat GnRHR was investigated by mutagen...
متن کاملHistidine(7.36(305)) in the conserved peptide receptor activation domain of the gonadotropin releasing hormone receptor couples peptide binding and receptor activation.
Transmembrane helix seven residues of G protein-coupled receptors (GPCRs) couple agonist binding to a conserved receptor activation mechanism. Amino-terminal residues of the GnRH peptide determine agonist activity. We investigated GnRH interactions with the His(7.36(305)) residue of the GnRH receptor, using functional and computational analysis of modified GnRH receptors and peptides. Non-polar...
متن کاملCarboxyl tail cysteine mutants of the thyrotropin-releasing hormone receptor type 1 exhibit constitutive signaling: role of palmitoylation.
We studied the role of carboxyl tail cysteine residues and their palmitoylation in constitutive signaling by the thyrotropin-releasing hormone (TRH) receptor type 1 (TRH-R1) in transfected mammalian cells and in Xenopus laevis oocytes. To study palmitoylation, we inserted a factor Xa cleavage site within the third extracellular loop of TRH-R1, added a carboxyl-terminal C9 immunotag and expresse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular pharmacology
دوره 66 5 شماره
صفحات -
تاریخ انتشار 2004